
STAT COE-Report-02-2019

STAT Center of Excellence
2950 Hobson Way – Wright-Patterson AFB, OH 45433

Applying STAT to
Defense Business Systems

Authored by: Bill Rowell, PhD

09 May 2019

The goal of the STAT COE is to assist in developing rigorous, defensible test

strategies to more effectively quantify and characterize system performance

and provide information that reduces risk. This and other COE products are

available at www.afit.edu/STAT.

http://www.afit.edu/STAT

STAT COE-Report-02-2019

Table of Contents

Executive Summary ... 2

Introduction .. 2

Tools .. 2

Stochastic Processes ... 2

System performance ... 3

Statistical Methods ... 3

Design of Experiments (DOE) .. 5

System scalability .. 10

Mobile performance ... 11

Deterministic Processes .. 11

Software testing .. 11

Combinatorial Optimization .. 12

Automated Software Testing (AST) ... 14

Pseudo-Exhaustive Verification (PEV) ... 15

Interface/Business Process Testing Prioritization ... 16

Lessons Learned .. 18

User Response Time Requirements .. 18

User Expectations ... 18

User Experience .. 18

Rigorously verifiable.. 18

Contractual Considerations .. 19

System Reliability Availability Maintainability (RAM) ... 19

Conclusion ... 19

References .. 21

STAT COE-Report-02-2019

Page 2

Executive Summary
The intelligent application of Scientific Test and Analysis Techniques (STAT) to Department of Defense

(DoD) weapon systems has proven to be a key component in enabling the efficient, effective, and

rigorous testing of weapon systems to support decision making at all levels. With the recent emergence

of Defense Business Systems (DBSs) as defined by DoDI 5000.75 Business Systems Requirements and

Acquisition, there has also been a similar interest throughout the DoD testing community in leveraging

STAT for DBSs. This paper has two goals:

 Provide insights into the appropriate STAT tools to apply to the test and evaluation of DBSs

 Present lessons learned from applying the STAT process to the test and evaluation of DBSs

Keywords: defense business system, combinatorial optimization, information technology, design of

experiments, scientific test and analysis techniques, test and evaluation

Introduction
Scientific Test and Analysis Techniques (STAT) are deliberate, methodical processes and techniques that

create traceability from requirements to analysis. All phases and types of testing (developmental,

operational, integrated, and live fire testing) strive to deliver defensible and decision-enabling results in

an efficient manner. The incorporation of STAT provides a rigorous methodology to accomplish this goal.

The February 2017 publication of DoDI 5000.75 Business Systems Requirements and Acquisition and the

subsequent establishment of a web-based Business Community of Practice testify to the distinctive

nature of the acquisition of Defense Business Systems (DBSs). These developments also highlight the

need to tailor the acquisition process, including Test and Evaluation (T&E) and the application of STAT,

to the nature of DBSs.

The STAT processes and techniques appropriate to a specific requirement can be identified by applying

the STAT Center of Excellence (COE)-defined STAT process to the requirement. The Tools section

provides insights that the STAT COE has gained into STAT tools frequently applied to the T&E of a DBS’s

stochastic and deterministic processes. The subsequent Lessons Learned section contains insights and

recommendations gained from applying STAT to DBSs.

Tools

Stochastic Processes
A stochastic process is one with an output (response) that is a random variable, that is, the possible

values are the outcomes of a random phenomenon. The response time to retrieve and render a report

STAT COE-Report-02-2019

Page 3

from a database is an example of a stochastic process because even when identical reports are run at

different times the response-time values vary randomly based on the inherent variability (noise)

associated with the time to transmit the query to the server, perform the query, transmit the results to

the user, and display the report to the user.

System performance

DBS stochastic processes frequently have system performance measures, that is, system attributes that

can be expressed typically in units of time or capacity. Typically, system performance measures include

measures such as transaction execution time, query response time, document generation time,

document rendering time, document download time, workflow process time, and maximum active users

where the mix of objects involved in the process (transactions, queries, documents generated, users,

etc.) is representative of the expected mix in the production environment. This type of requirement may

be expressed in absolute terms for a long running process, for example, a requirement could stipulate

that a work flow process cannot exceed 24 hours. For processes that typically take seconds, the nature

of the requirement is usually to ensure that the experience of the user of the system is acceptable for a

high proportion of the time. For example, a requirement may be stated that the user must be able to

view the results of 95% of all queries within 5 seconds. The key STAT tools for addressing system

performance requirements are statistical methods (descriptive and inferential statistics) and Design of

Experiments (DOE).

Statistical Methods

Descriptive statistics summarize data using graphical approaches and numerical summaries. As their

name implies, they are helpful in understanding test data outputs but by themselves do not provide

sufficient evidence to make the kind of rigorous statement necessary for requirement verification.

Figure 1 displays a sample list of descriptive statistical methods.

Figure 1: Summary of descriptive statistics methods

STAT COE-Report-02-2019

Page 4

On the other hand, correct use of inferential statistics can provide evidence for rigorous verification of

system performance requirements. Inferential statistics are methods for making decisions or predictions

about a population based on data obtained from a sample. Figure 2 displays definitions for a population

and a sample. In the case of a system performance requirement, the population may be the set of

report retrieval times for all reports in the application and the sample may be a random subset of all the

reports typically requested by users in the operational environment. By taking a random subset, we help

ensure that the sample will be representative of the desired population.

Figure 2: Definitions of Population and Sample

Figure 3 illustrates a high-level example of how we use inferential statistics to verify a requirement. Let’s

say for example we want to make a rigorous statement about the time it takes a DBS to retrieve a

report. We have formulated a null hypothesis that the population mean (μ) of the retrieval response

time is less than or equal to 7 seconds 95% of the time and selected a sample size (12). Next we identify

the appropriate statistic to compute (the 95% one-sided upper confidence interval). Next we collect the

representative sample and compute the statistic. If the computed statistic (one-sided confidence

interval [t, ∞]) does not contain the hypothesized mean (7 seconds), that is 7 seconds is less than the

lower bound on the one-sided confidence interval, we can conclude that we fail to reject the null

hypothesis (requirement has been verified); otherwise, we can conclude that we can reject the null

hypothesis (requirement has not been verified).

STAT COE-Report-02-2019

Page 5

Figure 3: Inferential Statistics Process Example

Design of Experiments (DOE)

The purpose of this section is to discuss how DOE is applied to a DBS stochastic process and illustrate

this application with a realistic example.

STAT tools are frequently used to determine how the value of the response is influenced by the values

of factors or inputs associated with both stochastic and deterministic processes. In our report retrieval

time example some of these potential factors include the number of queries that must be performed to

generate the report, the number of tables in each query, the current workload on the database server,

the size of the report, the current traffic on the network, and the download speed to the machine

submitting the report request.

Figure 4 summarizes the key concepts behind statistical DOE as applied to stochastic processes

STAT COE-Report-02-2019

Page 6

Figure: 4 Key Aspects of Design of Experiments

Figure 5 shows a high-level view of the various phases of the testing process and how it supports the

program’s decision making. The figure explicitly breaks out the elements that are performed during the

planning phase as part of applying STAT, specifically DOE in this case.

Figure 5: How DOE Fits into Test Process

STAT COE-Report-02-2019

Page 7

Figure 6 presents the information for each of the five elements of the planning phase for our example

DBS stochastic process—the report retrieval response time. In our scenario Subject Matter Experts

(SMEs) have identified four factors (# of tables in query, report size, system load, and download speed)

that may affect the report retrieval response time and two levels for each factor representing the range

of possible factor values. To avoid unnecessary complications, we have assumed that the number of

tables in the query generating the report can take on any value between two and five. During actual

execution of this test, only discrete numbers would be considered for the number of tables.

Figure 6: DOE Planning Phase Info

Figure 7 depicts both the design (8 test cases in the first four columns) and response times (results) of

running all 8 test cases (last column). JMP (a statistical too)l was used to generate the 2-way interaction

test design and simulate the response times based on the fitted, normalized linear regression model

displayed in Figure 8. The model’s equation can be used to estimate report retrieval response times for

the range of factor values (the first test objective in Figure 6). Specifically, the chart shows that the

range of response times without taking into account the normal error term is between 2.7525 and

10.5275 seconds. The non-zero coefficients in the equation of the underlying model, which has been

standardized, indicate that all of the main factors and the interaction between the Number of Tables in

Query and Report Size are statistically significant, that is, significantly influence report retrieval response

time; and the other 2-way interactions have been dropped as not being sufficiently significant. The

magnitude and direction of the coefficients of the main factors and single interaction term shows the

STAT COE-Report-02-2019

Page 8

strength and direction of the change in response time with changes in the factor value. For example, not

unexpectedly as Download Speed increases Report Retrieval Response Time decreases. Given the

absolute value of the Download Speed coefficient is 0.9 and the difference in the upper and lower

bounds is 30 Mbps, for each 1 Mbps increase in Download Speed retrieval response time will decrease

by 0.03 seconds.

Figure 7: DOE Design/Execution Info

STAT COE-Report-02-2019

Page 9

Figure 8: Fitting Model with Test Results Data

Figure 9 depicts the analysis used to rigorously verify the hypothesis that 80% of all queries will be

displayed to the user within 15 seconds or less of the time that the query was submitted (the second

test objective in Figure 6). This type of requirement was verified using the tolerance interval calculator

found in JMP.

STAT COE-Report-02-2019

Page 10

Figure 9: Verifying Satisfaction of Performance Requirements

Note that load testing and instrumentation are two critical areas for correctly performing DBS system

performance tests. Employment of load testing is done to create the expected operational profile of

transactions in the testing environment, that is, a specified number of transactions per second of each

type of transaction that will be running when the actual performance testing is occurring. At a minimum,

the end-to-end segments that contribute to the system’s performance measure must be instrumented.

Although the formal Threshold/Objective value itself may not include all segments of the end-to-end

system performance time, it is important that the instrumentation captures the time associated with all

segments of the end-to-end performance time. The end-to-end data values will be helpful in fully

assessing the contribution to the users’ experience of all segments and assisting with taking the actions

needed to adjust the users’ experience.

System scalability

A typical requirement for a DBS is that its performance does not degrade or degrades gracefully as

workload beyond the expected daily level, which is typically the maximum daily load, is added in the

form of concurrent users, batch jobs, increased mission tempo (transactions per second), etc. Meeting

this type of requirements ensures that the system is designed so that additional capacity is available

when needed.

STAT COE-Report-02-2019

Page 11

In addition to statistical methods and DOE STAT techniques load testing and instrumentation are

frequently essential to achieving test objectives. Note that under some circumstances it may not be

feasible to scale the size of the system (per requirements) to empirically test whether the system meets

its scalability requirements. For example, substantially increasing the number of service members in a

service’s personnel system to conduct a system scalability test in anticipation of a national emergency,

requires generating an extremely large amount of custom personnel data. In these cases, in lieu of full-

scale testing, a program may accept verifying the scalability requirements via an analysis of an

architectural performance model of the system.

Mobile performance

Increasingly, DBSs need to service mobile devices which deploy in no- and low-communication

environments. The Joint Operational Medicine Information Systems (JOMIS) Mobile Computing

Capability (MCC) and the Navy Maritime Maintenance Enterprise Solution – Technical Refresh (NMMES-

TR) are good examples of DBSs that face these types of communication challenges. Compared to

performance testing of always-connected devices, mobile performance testing involves a much greater

number of variable factors, such as wireless network conditions, the types of devices, device

performance, packet loss, latency and bandwidth, which may have significant effects on system

performance. Although many of these factors may not be under direct control of the system’s Program

Management Office, it is still important that the mobile system testing design take them into account in

order to characterize the performance of the system throughout the range of operating conditions.

Deterministic Processes
A deterministic process is one with an output (response) that is fully determined by the process’s initial

conditions and input values. For example, assuming there are no stochastic processes within a software

program, such as ones that generate random numbers, the output of running a software program for

the same inputs and the same initial conditions remains the same every time the program is executed.

On the other hand, a stochastic process can generate a different output for the same initial conditions

and same input values, thereby creating a distribution of output values instead of a single output value

for multiple executions of the process.

Software testing

The purpose of an individual software test case is to verify that valid inputs and behavior produce the

expected outputs (positive testing) and that invalid inputs and behavior are detected and handled

appropriately (negative testing). Positive testing ensures that the system can accomplish the intended

functionality whereas negative testing ensures that the system behaves gracefully, for example, by

catching invalid inputs and helping users to correct their inputs and behavior so the desired functionality

can be exercised. Faults are detected whenever the given inputs to a test case do not produce the

expected outputs. Fault detection applies to both positive and negative test cases. Ideally a set of test

cases could be generated to identify all possible faults—an objective that is impractical except in trivial

STAT COE-Report-02-2019

Page 12

software programs. The three sections below describe how STAT tools can help design and execute a set

of software test cases that will effectively and efficiently identify faults.

Combinatorial Optimization

STAT can be especially helpful when there is a need to test a deterministic process with a binary (no

fault/fault) output (response) that is dependent on a large number of discrete inputs/factors, each with

many potentially valid settings (levels). For example, consider the parts ordering form with 5 input

fields: Availability, Delivery Mode, Urgency, Delivery Location, and Funding Source depicted in Figure 10.

With each of the first 3 fields having 4 different choices in the dropdown and the remaining 2 each

having 3 different choices, a total of 576 (4x4x4x3x3) possible test cases must be executed to test every

factor combination unless some of the combinations are not feasible, such as ordering a part to be

delivered overnight by a re-supply ship.

Figure 10: Analysis of factors in software application form

Because of resource and other limitations, it is frequently impossible to execute all of the possible test

cases (exhaustive testing) in this kind of situation. The questions to be answered are how many test

cases to execute and which test cases to execute. Fortunately, empirical studies have shown that

regardless of the actual number of factors in a software application form, a very high percentage of

software faults arise from the interaction of a small number of factors (6 or less) (Kuhn, 2004).

Combinatorial Optimization (CO), an advanced mathematical technique, can be used to identify a

STAT COE-Report-02-2019

Page 13

significantly smaller (less than exhaustive) number of test cases based on identifying 6-way or less factor

interactions that are highly likely to cover a high percentage of software faults. Figure 10 displays the

factors and levels in the example parts ordering form and the number of possible t-way factor

interactions for t = 1, 2, 3, 4, 5. Applying the National Institute of Science and Technology (NIST)-

developed CO tool, Automated Combinatorial Testing for Software (ACTS), to the parts ordering form

described above, we can identify effective and efficient sets of test cases over a range of different t-way

factor interactions (Automated Combinatorial Testing for Software). Figure 11 shows the test case set

and coverage metrics for application of the ACTS 2-way factor solution while Figure 12 shows the same

data for the ACTS 3-way factor interaction. Thus, ACTS provides the decision maker with valuable

tradeoff information (number of test cases vs interaction coverage) to help allocate testing resources.

ACTS 2-Way Solution

16 Test Cases

Test
Case #

Availability Delivery
 Mode

Urgency Delivery
Location

Funding
Source

1 Available Military Plane 2-5 days OCONUS-East General Fund

2 Available Re-supply ship 6-10 days OCONUS-West Transaction Fund

3 Available USPS >10 days CONUS Working Capital Fund

4 Available UPS Overnight OCONUS-East Transaction Fund

5 Back ordered Military Plane 2-5 days CONUS Working Capital Fund

6 Back ordered Re-supply ship 6-10 days OCONUS-East General Fund

7 Back ordered USPS >10 days OCONUS-West General Fund

8 Back ordered UPS Overnight CONUS Transaction Fund

9 Discontinued Military Plane 2-5 days OCONUS-West Transaction Fund

10 Discontinued Re-supply ship 6-10 days CONUS Working Capital Fund

11 Discontinued USPS >10 days OCONUS-East Working Capital Fund

12 Discontinued UPS Overnight OCONUS-West General Fund

13 Replaced Military Plane 2-5 days CONUS General Fund

14 Replaced Re-supply ship 6-10 days OCONUS-West Working Capital Fund

15 Replaced USPS >10 days OCONUS-East Transaction Fund

16 Replaced UPS Overnight CONUS Working Capital Fund

Factor Interaction Coverage
1-way factor interactions 18/18 100% 4-way interaction 80/816 10%
2-way factor interactions 129/129 100% 5-way interaction 16/576 3%
3-way factor interactions 159/460 35%

Figure 11: Coverage Analysis of 2-way Factor Interaction Solution

STAT COE-Report-02-2019

Page 14

ACTS 3-Way Solution

64 Test Cases (first 16 shown)

Test
Case #

Availability Delivery
 Mode

Urgency Delivery
Location

Funding
Source

1 Available Military Plane Overnight CONUS Working Capital Fund

2 Available Military Plane 2-5 days OCONUS-East General Fund

3 Available Military Plane 6-10 days OCONUS-West Transaction Fund

4 Available Military Plane >10 days CONUS General Fund

5 Available Re-supply ship Overnight OCONUS-East Transaction Fund

6 Available Re-supply ship 2-5 days OCONUS-West Working Capital Fund

7 Available Re-supply ship 6-10 days CONUS General Fund

8 Available Re-supply ship >10 days OCONUS-East Working Capital Fund

9 Available USPS Overnight OCONUS-West General Fund

10 Available USPS 2-5 days CONUS Transaction Fund

11 Available USPS 6-10 days OCONUS-East Working Capital Fund

12 Available USPS >10 days OCONUS-West Transaction Fund

13 Available UPS Overnight CONUS General Fund

14 Available UPS 2-5 days OCONUS-East Working Capital Fund

15 Available UPS 6-10 days OCONUS-West Transaction Fund

16 Available UPS >10 days CONUS Working Capital Fund

Factor Interaction Coverage
1-way factor interactions 18/18 100% 4-way interaction 316/816 39%
2-way factor interactions 129/129 100% 5-way interaction 65/576 11%
3-way factor interactions 460/460 100%

Figure 12: Coverage Analysis of 3-way Factor Interaction Solution

Automated Software Testing (AST)

AST involves the use of software tools to execute pre-scripted tests that would normally be executed

manually. Automated testing tools are capable of executing tests, reporting outcomes, and comparing

results with earlier test runs. Tests carried out with these tools can be run repeatedly throughout a

DBS’s software development life cycle.

AST can offer significant improvements in test efficiency and effectiveness for DBSs, but the benefits of

implementing AST in any particular situation must be weighed against the required investment in

personnel, process, and technology. Most successful AST implementations follow a deliberate six-phase

process (Pre-plan, Plan, Design, Execute, Analyze, and Maintain). In the planning phases of an AST

STAT COE-Report-02-2019

Page 15

program, a return on investment (ROI) or business case analysis must be performed that, among other

considerations, takes into account the relevant characteristics of the expected software development

environment (Agile, DevOps, etc.) . An AST Best Practice (Pestak, 2017) and an AST Implementation

Guide for Managers and Practitioners (Simpson, 2018) are available through the STAT COE.

Pseudo-Exhaustive Verification (PEV)

A rule-based DBS, such as an enterprise system that determines the eligibility of military service

members for various financial entitlements, may contain a large number of complex business rules that

need to be coded correctly. An example rule is depicted in Figure 13.

Figure 13: Complex Compensation Eligibility Rule

Fully verifying that the software correctly captures the logic of only a single complex rule may require a

few hundred test cases. NIST has developed a STAT tool, Psuedo-Exhaustive Verification (PEV), to rapidly

generate the complete set of test cases required to verify each complex business rule (Kuhn, 2016).

Figure 14 shows all 20 test cases generated by PEV to verify rules that result in the member being

eligible whereas Figure 15 depicts 36 of the 250 test cases required to verify rules that result in the

member being ineligible. To fully realize the value of the PEV capability for systems that have a large

number of business rules, this tool must be integrated into an end-to-end process. This process starts

with translating a business rule into logic expressions that the tool can then use as input and ends with

the System Under Test executing each of the test cases generated by the tool.

STAT COE-Report-02-2019

Page 16

Figure 14: PEV Generation of All Eligible Test Cases

Figure 15: PEV Generation of All Ineligible Test Cases

Interface/Business Process Testing Prioritization

A DBS, especially an enterprise system, frequently has multiple interfaces and business processes.

Associated with each interface and business process are the set of detailed data exchanges that define

the total functionality provided by the interface or business process. Consequently, testing these

interfaces and business processes is usually lengthy and complex requiring substantial resources. A key

STAT COE-Report-02-2019

Page 17

issue is how to sequence the testing of the interfaces and business processes to increase the likelihood

of finding critical interface and business process problems early in the testing process.

Multiple Attribute Decision Analysis (MADA) has been applied to sequence the testing of interfaces and

business processes to minimize the risk associated with the overall plan for interface and business

process testing (Stimpson, 1981). Interface/business process risk is first broken down into various risk

factors associated with testing a set of interfaces/business processes, such as criticality, complexity, and

maturity. Each of the interfaces/business processes will be assigned a value for each factor indicating

the relative risk associated with finding a problem with that interface/business process--the higher the

value assigned, the greater the likelihood that the interface/business process will experience problems

during interface testing attributable to that factor. Factors can be weighted based on their relative

importance, and testing-order dependencies among interfaces/business processes can be captured. The

MADA-generated interface/business process test sequence will insure high-risk interfaces/business

processes are addressed early in the testing process. Figure 16 depicts a simple notional example of how

to use MADA to sequence the testing of DBS interfaces. Note that the general approach of executing

test cases by frontloading the testing with the high risk test cases can also be applied to other areas of

testing.

Figure 16: Applying MADA to reduce risk of interface testing

STAT COE-Report-02-2019

Page 18

Lessons Learned

User Response Time Requirements

A key aspect of T&E of DBSs is formulating user response time requirements that not only take into

account user expectations and experience but are also enable use of rigorous methods to verify.

User Expectations

Sometimes user response time requirements appear to be set based more on what can be easily

achieved rather than on user expectations. User response time requirements should take into account

user expectations. A good approach is to formally survey or interview users to identify an acceptable

range of response times for each type of transaction.

User Experience

Additionally, transaction response time requirements can be set up to measure only the processing time

done by the system under test (SUT) based on the argument that the program is only responsible for

that part of the end-to-end response time that it controls. While technically correct, such an approach

does not acknowledge the unavoidable responsibility of the program to work with all segments on the

end-to-end request-response time path to insure the total user experience is acceptable. A better

approach is to specify an end-to-end user response time that reflects the desired user experience and

include explicit assumptions about non-SUT components of the end-to-end path, such as continuous

network connectivity and continuous information exchange partner availability.

Rigorously verifiable

Finally, sometimes user response time requirements are specified in pass/fail terms,; for example, the

transaction response time must be less than or equal 10 seconds. Such brittle requirements don’t

accurately reflect the stochastic nature of user response times. There is no rigorous way to determine a

sample size that would quantify the risks of not meeting this type of requirement. Furthermore, it is not

clear how to proceed with additional testing if response times exceed the maximum.

A more rigorous way is to formulate user response time requirements as statements that can be

straightforwardly transformed into statistical hypotheses such as the following:

 The % of the population (proportion) have a response time less than or equal to x seconds

 The mean response time of the population is less than or equal to x seconds

With addition of suitable confidence levels the first requirement above can be translated into one-sided

tolerance interval and the second into a one-sided confidence interval.

STAT COE-Report-02-2019

Page 19

Contractual Considerations
In addition to the STAT support provided by the STAT COE DBS programs need to ensure that the system

implementer is also on contract to employ STAT in their testing activities. Below is a list of STAT-related

tasks that can be incorporated into the Performance Work Statement (Harman, 2018):

 Use STAT during the process of planning, designing, executing and analyzing the testing of

requirements with responses/outputs that are random variables such as user response times

and download times.

 Use optimization techniques, such as Combinatorial Optimization, to generate a covering set of

efficient test cases for complex user screens, that is, ones with a large number of input fields

(factors) that each have numerous different discrete values (levels) from which to choose.

 Demonstrate that test sets exhaustively cover complex, critical business rules by using validated

tools such as the NIST Psuedo-Exhaustive Verification tool.

 Incorporate STAT-related information in the T&E Contract Data Requirements Lists (CDRLs), such
as Software Test Plan, Software Test Description, and Software Test Report.

 Prioritize and scope test activities involving business processes and system interfaces using a

capabilities risk-based approach such as Multiple Attribute Decision Analysis.

System Reliability Availability Maintainability (RAM)
It’s critical that DBS programs develop a simple, comprehensive but effective approach to handling

system RAM. Otherwise, programs can easily get involved in a quagmire debating the value of

meaningless metrics, often based on hardware systems rather than software systems, that fail to drive

behavior in the desired direction. Here are three general guidelines for an effective approach to RAM

that avoids these pitfalls:

 The overall focus of RAM should be on achieving the threshold/objective operational availability

of the system to perform its mission.

 The reliability component should emphasize a process and a set of metrics that drive rapid

identification and removal of software defects that most affect mission accomplishment.

 The maintainability component should likewise be process-oriented with metrics that drive

behavior that supports operational availability.

Conclusion
Table 1 summarizes the common applications of STAT tools to the T&E of DBSs. The effective use of

STAT results in an iterative process that begins with the requirement and proceeds through the

generation of test objectives, designs, and analysis plans all focused on definitively addressing the

requirement. Moreover, the effective use of STAT in T&E of a DBS ensures adequate coverage of input

ranges and use cases as well as enables optimal employment of test resources.

STAT COE-Report-02-2019

Page 20

Table 1: DBS Application Area-STAT Tool Mapping

Key lessons learned on applying STAT to DBSs include:

 User response time requirements need to be carefully scrutinized to ensure they are rigorous

and take into account user expectations and experience.

 DBS Performance Work Statements need to include specific tasks to ensure that the contractor

provides adequate STAT support in their testing activities.

 DBS programs need to develop a simple, comprehensive but effective approach to handling

system RAM that focuses on meeting operational availability requirements supported by

process-oriented reliability and maintainability components.

STAT COE-Report-02-2019

Page 21

References
“Automated Combinatorial Testing for Software.” National Institute of Standards and Technology,

csrc.nist.gov/projects/automated-combinatorial-testing-for-software. Accessed 13 February 2019.

Harman, Michael and Rowell, William. “Specifying STAT Requirements In Defense Contracts Revision 2,”

STAT COE-Report-36-2018, November 2018. www.afit.edu/stat/statcoe_files/Specifying STAT

Requirements in Defense Contracts R2.pdf. Accessed 2 May 2019.

Kuhn, R. et al. “Pseudo--exhaustive Testing of Attribute Based Access Control Rules”, Ninth IEEE

International Conference on Software Testing, Verification and Validation Workshops, ICST Workshops

2016, pp. 50-58.

Kuhn, R. et al. "Software Fault Interactions and Implications for Software Testing," IEEE Transactions on

Software Engineering, vol. 30, no. 6, June 2004, pp. 418-421.

Pestak, Thomas and Rowell, William. “Automated Software Testing Practices and Pitfalls,” STAT COE-

Report-02-2017, April 2017. www.afit.edu/stat/statcoe_files/AST_Practices_and_Pitfalls.pdf. Accessed

13 February 2019.

Simpson, Jim et al. “Automated Software Test Implementation Guide for Managers and Practitioners,”

STAT COE-Report-05-2018, October 2018. www.afit.edu/stat/statcoe_files/0214simp 2 AST IG for

Managers and Practitioners.pdf. Accessed 23 May 2019.

Stimpson, Wayne A. “MADAM: Multiple-Attribute Decision Analysis Model Volume 1”, Thesis, Air Force

Institute of Technology, December 1981. www.dtic.mil/dtic/tr/fulltext/u2/a111104.pdf. Accessed 13

February 2019.

http://www.afit.edu/stat/statcoe_files/0214simp%202%20AST%20IG%20for%20Managers%20and
http://www.afit.edu/stat/statcoe_files/0214simp%202%20AST%20IG%20for%20Managers%20and
http://www.dtic.mil/dtic/tr/fulltext/u2/a111104.pdf.%20Accessed%2013%20February%202019
http://www.dtic.mil/dtic/tr/fulltext/u2/a111104.pdf.%20Accessed%2013%20February%202019

